个人资料

跳过导航链接首页 > 博客列表 > 博客正文

C#实现matlab的几个函数(fft2,ifft2,psf2otf,diff)

分类:

使用Nuget工具包MathNet

ifft2:

        public static Matrix<Complex32> ifft2(Matrix<Complex32> matrix)
        {

            var Xsamples = matrix.ToRowArrays();//.ToRowMajorArray();

            for (int i = 0; i < Xsamples.Length; i++)
            {
                Fourier.Inverse(Xsamples[i], option);

            }

            matrix = Matrix.Build.DenseOfRowArrays(Xsamples);

            var Ysamples = matrix.ToColumnArrays();

            for (int i = 0; i < Ysamples.Length; i++)
            {
                Fourier.Inverse(Ysamples[i], option);
            }

            

            matrix = Matrix.Build.DenseOfColumnArrays(Ysamples);

            // optional
            matrix.CoerceZero(1e-7);

            return matrix;

        }


diff:


public static Matrix<Complex32> diff(Matrix<Complex32> matrix, int grade, int type)
        {
            if (type == 1)//按行
            {
                var mat = Matrix.Build.Dense(matrix.RowCount - 1, matrix.ColumnCount);

                for (int i = 0; i < matrix.RowCount; i++)
                {
                    if (i == 0)
                    {
                        continue;
                    }
                    for (int j = 0; j < matrix.ColumnCount; j++)
                    {
                        mat[i - 1, j] = matrix[i, j] - matrix[i - 1, j];
                    }
                }
                return mat;
            }
            else if (type == 2)//按列
            {
                var mat = Matrix.Build.Dense(matrix.RowCount, matrix.ColumnCount - 1);

                for (int j = 0; j < matrix.ColumnCount; j++)
                {
                    if (j == 0)
                    {
                        continue;
                    }
                    for (int i = 0; i < matrix.RowCount; i++)
                    {
                        mat[i, j - 1] = matrix[i, j] - matrix[i, j - 1];
                    }
                }
                return mat;
            }
            else
            {
                return matrix;
            }
            ///matrix = Matrix.Build.DenseOfColumnArrays(Cols);

        }
psf2otf:



public static Matrix<Complex32> psf2otf(Matrix<Complex32> matrix, int row = 0, int col = 0)
        {
            if (row == 0)
            {
                row = matrix.RowCount;
            }
            if (col == 0)
            {
                col = matrix.ColumnCount;
            }

            var PadMatrix = Matrix.Build.Dense(row, col, 0);

            for (int i = 0; i < matrix.RowCount; i++)
            {
                for (int j = 0; j < matrix.ColumnCount; j++)
                {
                    PadMatrix[i, j] = matrix[i, j];
                }
            }

            matrix = PadMatrix;
            // Pad the PSF to outSize
            // padSize = outSize - psfSize;
            // psf = padarray(psf, padSize, 'post');

            // Circularly shift otf so that the "center" of the PSF is at the
            // (1, 1) element of the array.
            // psf = circshift(psf, -floor(psfSize / 2));

            int d_r = (int)Math.Floor((double)row / 2 - 1);
            int d_c = (int)Math.Floor((double)col / 2 - 1);



            var Rows = matrix.ToRowArrays();

            Complex32[][] newRows = new Complex32[matrix.RowCount][];



            for (int i = 0; i < matrix.RowCount; i++)
            {
                if (d_r + i < matrix.RowCount)
                {
                    newRows[i] = Rows[d_r + i];
                }
                else
                {
                    newRows[i] = Rows[d_r + i - matrix.RowCount];
                }

            }


            matrix = Matrix.Build.DenseOfRowArrays(newRows);
            //
            var Cols = matrix.ToColumnArrays();
            Complex32[][] newCols = new Complex32[matrix.ColumnCount][];

            for (int i = 0; i < matrix.ColumnCount; i++)
            {
                if (d_c + i < matrix.ColumnCount)
                {
                    newCols[i] = Cols[d_c + i];
                }
                else
                {
                    newCols[i] = Cols[d_c + i - matrix.ColumnCount];
                }

            }
            //var mid = Cols[0];
            //Cols[0] = Cols[d_c];
            //Cols[d_c] = mid;

            matrix = Matrix.Build.DenseOfColumnArrays(newCols);



            var Xsamples = matrix.ToRowArrays();//.ToRowMajorArray();

            for (int i = 0; i < Xsamples.Length; i++)
            {
                MathNet.Numerics.IntegralTransforms.Fourier.Forward(Xsamples[i], option);

            }

            matrix = Matrix.Build.DenseOfRowArrays(Xsamples);

            var Ysamples = matrix.ToColumnArrays();

            for (int i = 0; i < Ysamples.Length; i++)
            {
                MathNet.Numerics.IntegralTransforms.Fourier.Forward(Ysamples[i], option);
            }



            matrix = Matrix.Build.DenseOfColumnArrays(Ysamples);




            matrix.CoerceZero(1e-7);
            return matrix;
            // Foriour.
            //MathNet.Numerics.IntegralTransforms.Fourier.Forward2D(matrix, FourierOptions.Matlab);




        }
fft2
  public static Matrix<Complex32> fft2(Matrix<Complex32> matrix)
        {



            var Xsamples = matrix.ToRowArrays();//.ToRowMajorArray();

            for (int i = 0; i < Xsamples.Length; i++)
            {
                MathNet.Numerics.IntegralTransforms.Fourier.Forward(Xsamples[i], option);

            }

            matrix = Matrix.Build.DenseOfRowArrays(Xsamples);

            var Ysamples = matrix.ToColumnArrays();

            for (int i = 0; i < Ysamples.Length; i++)
            {
                MathNet.Numerics.IntegralTransforms.Fourier.Forward(Ysamples[i], option);
            }



            matrix = Matrix.Build.DenseOfColumnArrays(Ysamples);


            matrix.CoerceZero(1e-7);

            return matrix;


        }

补充:其中option的定义为

public static FourierOptions option { get; set; } = FourierOptions.Matlab;

songshizhao
最初发表2020/2/6 23:15:32 最近更新2020/2/6 23:20:17 481
为此篇作品打分
10
   评论